

FOR FLOORINGS AND WALKWAYS

TECHNICAL DATA

specialist in the development, manufacturing and supply of Trosifol® PVB and SentryGlas® ionoplast interlayers for aminated safety glass applications in the architectural, automotive and photovoltaic industries.

TROSIFOL - YOUR GLOBAL PARTNER FOR LAMINATED SAFETY GLASS INTERLAYERS

The Kuraray Group conducts research and development to deliver products that benefit consumers, society and industry. The Trosifol business within this Group positions itself as a pioneer of new technologies for the development of innovative solutions for laminated safety glass. All employees live this innovative culture every day. Trosifol® and SentryGlas® are 100% brands of Kuraray.

We offer the world's broadest portfolio of innovative glass-laminating solutions, including structural and functional interlayers for safety & security applications, sound insulation and UV protection. For decorative applications, Trosifol supplies colored interlayers, digitally printable films and other innovative products for interior design projects. Trosifol® UltraClear films exhibit the lowest Yellowness Index (YID) in the industry.

Trosifol[®] products give applications an expression of strength, clarity and unique character, delivering advanced capabilities that enable engineers, designers and architects to save energy, increase safety and conceptualize with greater design freedom. Applications range from automotive and transportation glazing, to architectural and structural glazing - located overhead, underfoot, and all around some of the world's most fascinating spaces.

Trosifol is in the perfect position to be your preferred partner for laminated safety glass applications - serving the ever-changing demands of the global glass industry with https://www.trosifol.com/business/locations/ seven worldwide production sites and five R&D centers.

SMART SHEETS FOR SELECTING THE RIGHT GLASS COMBINATION FOR GLASS FLOORINGS AND WALKWAYS

Basic design requireme

- The glass flooring should be robus imposed live loads (weight of peo weight (dead load) with a reasona
- Glass being a brittle material, a h be ensured to sustain the design glass layers break accidentally du or accidental impact.
- Due to viscoelastic behavior of th temperatures must be considered the imposed live load and 40°C and
- From serviceability point of view, ing on the flooring due to excessiv

ents	
st enough to safely bear the ople) in addition to its own able safety factor.	
nigh design redundancy must loads even if any one of the le to spontaneous breakages,	
e interlayer, load duration and d. A load duration of 1 hour for re recommended.	
people should not fear mov- ve "sagging" (deflection).	
	ı

DESIGN

Design considerations

- The glass floorings have been considered to be supported on all the four edges. The edges have been considered to be "simply supported" in the structural analysis.
- "Sandwich" model used for non linear analysis in FEA tool SJ Mepla 5.0.6 Software
- Imposed loads on the flooring and the load combinations have been considered as per Australian standard AS 1170.1 - 2002. Load safety factor of 1.2 for self weight and 1.5 for imposed live load has been considered.
- Load combination for the scenario "All Layers are Intact" -1.2 x Self weight + 1.5 x Imposed live load
- Load combination for the scenario "One Layer is Broken" -1.0 x Self weight + 1.0 x Imposed live load
- Imposed concentrated live loads have been considered to be acting at the center of the panel in area of 150 x 150 mm.
- Permissible stresses for heat strengthened glass = 29.2 MPa (edge locations) and 62.9 MPa for fully tempered glass have been considered as ASTM E 1300 - 2019.
- For Post breakage strength check, the upper glass layer is considered to be broken.
- The maximum values of deflection and stress have been mentioned. For the majority of cases, it occurred for point loads.
- The smart sheet is applicable only to SentryGlas[®] 5000.

OTHER IMPORTANT DESIGN CONSIDERATIONS

Making the glass flooring with the combination of HS and FT glass is certainly the most ideal glass combination that not only ensures good resistance to accidental impacts but, also a high post breakage strength. However, below factors give an all FT glass combination an edge over HS-FT glass combination.

What glass type should be chosen, fully tempered or heat strengthened?

- FT glass has the highest stress endurance limit but doesn't have a high post breakage strength. Whereas, HS glass has a lower stress endurance limit but, a remarkably higher post breakage strength. Thus, a combination of FT and HS glass would be the ideal combination to get the best of the two worlds. However, assymetric surface waviness of FT and HS glass, laminators, genrally have low confidence for a successful lamination.
- Use of HS glass no doubt ensures high post breakage strength but, it limits the pre-breakage strength as permissible stress for HS glass at the edge locations, for 1 hour load is 29.2 MPa compared to 73.1 MPa for FT glass.
- FT glass is not promoted for flooring applications due to the fear of "wet blanket" effect getting triggered off post the accidental breakage of glass e.g. spontaneous breakages due to NiS or an hard body impact at the edges. FT glass can be very hard to break with impacts at locations other than edges. The probability of breakages of more than 1 glass layer due to impact at edges is extremely low as only the top layer is vulnerable. Similarly, the probability of spontaneous breakages due to NiS in more than 1 glass layer at the same time is extremely rare. A heat soak test is recommended to rule out any NiS related spontaneous breakages.
- High stiffness of SentryGlas[®] 5000 should resist "wet blanket" effect to get triggered off to a large extent in four side framed laminates even when tempered glass is used.

FLOORINGS IN PRIVATE RESIDENTIAL AREAS AND OFFICE AREAS FOR GENERAL USE

Glass panel (1.0 x 1.0 Mts) mesh with the point load acting at the center as used for finite element modeling & calculations in Mepla

Table 3.1 - Reference values of imposed floor actions

Type of activity/occupancy for part of the building or structure	Specific uses	Uniformly distributed actions	Concentrated actions
A Domestic and residential activities (also see category C)		[kPa]	[kN]
A1 Self-contained dwellings	General areas, private kitchens and laundries in self-contained dwellings	1.5	1.8 ¹
	Balconies and roofs used for floor type activities, in self-contained dwellings		
	a. less than 1 m above ground level	1.5	1.5 kN/m run along edge
	b. other	2.0	1.8 ¹
	Stairs ¹ and landings in self-contained dwellings	2.0	2.7
A2	Non-habitable roof spaces in self- contained dwellings	0.5	1.4 ¹
A2 Other	General areas, bedrooms, hospital wards, hotel rooms, toilet areas	2.0	1.8 ¹
	Communal kitchens	3.0	2.7
	Balconies and roofs used for floor type activities with community access	same as areas providing access but not less than 4.0	1.8
B Offices and work areas not covered elsewhere			
	Operating theatres, X-ray rooms, utility rooms	3.0	4.5
	Work rooms (light industrial) without storage	3.0	3.5
¹ Refer to Table 3.1 of AS 1288 - 2006	Offices for general use	3.0	2.71

Note: The user should make his/her own decision for the type of glass to be used. Above considerations are for informational purposes only.

PRIVATE RESIDENTIAL AREAS & OFFICE AREAS

IMPOSED LOADS 1. Uniform Load = 300 kg/m²

as per table 3.1 of AS 1170.1 2002

Load requirements

2. Point Load = 270 kg

LOAD ACTING FOR 1 HOUR @ 40°C TEMP.

STRESS AND DEFLECTION RESULTS FOR MAXIMUM ALLOWABLE FLOORING SIZES

Floorings in private & residential areas/office areas for general use with 3 x 6 mm/0.24 inch glass + 2 x 1.52 mm/60 mil SentryGlas®

Width	s	Deflection /	Lengt	hs [mm]												
		Stress	1000		1100		1200		1300		1400		1500		1600	
[mm]	[in]		[MPa]	Broken	[MPa]	Broken	[MPa]	Broken	[MPa]	Broken	[MPa]	Broken	[MPa]	Broken	[MPa]	Broken
1000	39.37	Deflection	2.59	3.79	2.74	4.06	2.86	4.28	2.96	4.46	3.03	4.6	3.08	4.71	3.12	4.80
		Stress	28.81	32.72	29.52	33.68	30.13	34.5	30.41	34.95	30.79	35.47	31.07	35.88	31.47	36.39
1100	43.31	Deflection	2.74	4.06	2.94	4.41	3.10	4.70	3.23	4.94	3.34	5.15	3.42	5.31	3.49	5.45
		Stress	29.52	33.68	29.47	33.63	30.12	34.50	30.50	35.07	30.97	35.7	31.35	36.22	31.83	36.84
1200	47.24	Deflection	2.86	4.28	3.10	4.70	3.30	5.06	3.47	5.38	3.62	5.65	3.74	5.88	3.83	6.07
		Stress	30.13	34.5	30.12	34.50	30.07	34.44	30.48	35.04	31.04	35.77	31.52	36.38	32.05	37.08
1300	51.18	Deflection	2.96	4.46	3.23	4.94	3.47	5.38								
		Stress	30.41	34.95	30.5	35.07	30.48	35.04								
1400	55.12	Deflection	3.03	4.60	3.34	5.15	3.62	5.65								
		Stress	30.79	35.47	30.97	35.70	31.04	35.77								
1500	59.06	Deflection	3.08	4.71	3.42	5.31	3.74	5.88								
		Stress	31.07	35.88	31.35	36.22	31.52	36.38								
1600	62.99	Deflection	3.120	4.80	3.49	5.45	3.83	6.07								
		Stress	31.47	36.39	31.8	36.84	32.1	37.08								
1700	66.93	Deflection	3.15	4.86	3.54	5.56	3.9	6.23								
		Stress	31.62	36.64	32.05	37.17	32.34	37.51								
1800	70.87	Deflection	3.18	4.91	3.58	5.65										
		Stress	31.73	36.83	32.22	37.45										
1900	74.80	Deflection	3.19	4.95												
		Stress	31.62	36.77												

Widths	Deflection/	Lengths [mm]		
[mm] [in]	Stress	1700 Intact Broken [MPa]	1800 Intact Broken [MPa]	1900 Intact Broken [MPa]
1000 39.37	Deflection	3.15 4.86	3.18 4.91	3.19 4.95
	Stress	31.62 36.64	31.73 36.83	31.62 36.77
1100 43.31	Deflection	3.54 5.56	3.58 5.65	
	Stress	32.05 37.17	32.22 37.45	
1200 47.24	Deflection	3.90 6.23		
	Stress	32.34 37.51		
1300 51.18	Deflection			
	Stress			
1400 55.12	Deflection			
	Stress			
1500 59.06	Deflection			
	Stress			
1600 62.99	Deflection			
	Stress			
1700 66.93	Deflection			
	Stress			
1800 70.87	Deflection			
	Stress			
1900 74.80	Deflection			
	Stress			

	Glass construction
en	3 x 6 mm (0.24 in) FT glass + 2 x 1.52 mm (60 mil) SentryGlas®
,	Loads and load combinations
	Max. uniform live load = 300 kg/m ²
	Point load = 270 kg
	Scenario 1: All layers intact 1.2 x Self weight + 1.5 x Imposed live load
	Scenario 2: Any one layer is accidentally broken 1.0 x Self weight + 1.0 x Imposed live load
	 Important notes The imposed live load has been considered to be acting for 1 hour @ 40°C. Young's Modulus for SentryGlas® E = 27.8 MPa Deflection values for one layer broken scenario have been calculated for information only. It may not be design requirements.
	Max. allowable deflection considered = Span / 300
	The maximum values of deflection and stresses have been mentioned. For the majority of cases, it occurry for the point load case.
	Permissible stresses for glass types for 1 hour load FT glass = 62.9 MPa Heat strengthened glass = 29.2 MPa

, it occurred

GLASS WALKWAYS FOR PUBLIC AREAS

Table 3.1 - Reference values of imposed floor actions

Type of activity/occupancy for part of the building or structure C Areas where people may congregate	Specific uses	Uniformly distributed actions [kPa]	Concentrated actions [kN]
C4 Areas with possible physical activities	Dance halls and studios, gymnasia Drill halls and drill rooms	5.0 5.0	3.6 9.0
C5 Areas susceptible to overcrowding	Assembly areas without fixed seating (concert halls, bars, vestibules, public lounges, places of worship, shopping malls and grandstands)	5.0	3.6
	Stages in public assembly areas	7.5	4.5
D Shopping areas	Shop floors for the sale and display of merchandise	4.0	3.6

PUBLIC AREAS

Load requirements as per table 3.1 of AS 1170.1 2002

IMPOSED LOADS

1. Uniform Load = 500 kg/m^2

2. Point Load = 360 kg

LOAD ACTING FOR 1 HOUR @ 40°C TEMP.

STRESS AND DEFLECTION RESULTS FOR MAXIMUM ALLOWABLE FLOORING SIZES

Floorings in public areas susceptible to overcrowding -with 3 x 8 mm/0.31 inch glass + 2 x 1.52 mm/60 mil SentryGlas[®] (Commercial & retail spaces where people may assemble in case of emergency)

Widths	Deflection/	Lengths [mm]													
	Stress	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600	Glass construction
[mm] [in]		Intact Broken [MPa]	Intact Broken [MPa]	Intact Broken [MPa]	Intact Broken [MPa]	3 x 8 mm (0.31 in) FT glass + 2 x 1.52 mm (60 mil) SentryGlas®									
1200 47.24	Deflection	2.32 3.49	2.54 3.9	2.68 4.19	2.78 4.39	2.84 4.55	2.87 4.88	2.93 5.13	3.03 5.34	3.10 5.50	3.16 5.62	3.20 5.71	3.23 5.78	3.25 5.84	
	Stress	25.09 28.41	25.91 29.70	26.74 30.81	27.18 31.47	27.31 31.8	27.62 32.18	27.72 32.36	27.64 32.37	27.81 32.54	27.82 32.59	27.69 32.52	27.84 32.65	27.84 32.66	Loads and load combinations
1400 55.12	Deflection	2.54 3.90	2.86 4.54	3.12 5.15	3.43 6.06	3.84 6.86	4.18 7.54	4.46 8.11							Max. uniform live load = 500 kg/m ²
	Stress	25.91 29.70	25.38 29.13	26.33 30.47	26.99 31.45	27.31 32.05	27.77 32.66	27.98 33.022							Point load = 360 kg
1600 62.99	Deflection	2.68 4.19	3.12 5.15	3.74 6.67	4.48 8.13	5.16 9.47									Scenario 1: All layers intact
	Stress	26.74 30.81	26.33 30.47	26.89 31.01	27.68 32.20	28.17 33.06									1.2 x Self weight
1800 70.87	Deflection	2.78 4.39	3.43 6.06	4.48 8.13											+ 1.5 x imposed tive toad
	Stress	27.18 31.47	26.99 31.45	27.68 32.20											Scenario 2:
2000 78.74	Deflection	2.84 4.55	3.84 6.86	5.16 9.47											1.0 x Self weight
	Stress	27.31 31.80	27.31 32.05	28.17 33.06							/				+ 1.0 x Imposed live load
2200 86.61	Deflection	2.87 4.88	4.18 7.54												Important notes
	Stress	27.62 32.18	27.77 32.66												1. The imposed live load has been con-
2400 94.49	Deflection	2.93 5.13	4.46 8.11												sidered to be acting for 1 hour @ 40°C.
	Stress	27.72 32.36	27.98 33.022												E = 27.8 MPa
2600 102.36	Deflection	3.03 5.34													3. Deflection values for one layer broken
	Stress	27.64 32.37													scenario have been calculated for
2800 110.24	Deflection	3.10 5.50													information only. It may not be design
	Stress	27.81 32.54													i equirements.
3000 118.11	Deflection	3.16 5.62													max. allowable deflection considered = Span / 300
	Stress	27.82 32.59													The maximum values of deflection and
3200 125.98	Deflection	3.20 5.71													stresses have been mentioned.
	Stress	27.69 32.52									<u> </u>				For the majority of cases, it occurred for
3400 133.86	Deflection	3.23 5.78													the point load case.
	Stress	27.84 32.65													Permissible stresses for glass types
3600 141.73	Deflection	3.25 5.84													for 1 hour load
	Stress	27.84 32.66													 FI glass = 62.9 MPa Heat strengthened glass = 29.2 MPa
								-	- N/m*2 -					-	
								c	+10.02 +17.91					+0.00	
					1			nakho	+17,00	Å +				-0,18 2 -0,28	
				Contraction (1)	Charles and			r Maha	+14,27 +13,36	T				-0.46 -0.46	
2				1	10000			Powe	*12.45					-0.45	
The second second				and the second	10000000			0 Xing	+10,63					-0,83	
Colored States				Sector Sector	And in case of			hoto:	-7,89					-1.11	
1100 B		PIA	12	and the second	The state of				+6.07 +9.16					-1.29 -1.39	
		-		2 11-	11- marine			and the second second	+4,25			and the second		-1.57 -1.66	
					the Plant	The second second		And the second second	-1.52		De la construcción de la			-1.76	

Maximum principal stress contours for the glass panel 1.0 x 1.0 mts under the imposed loads

Maximum deflection contours for glass panel 1.0 x 1.0 Mts under imposed loads

STRESS AND DEFLECTION RESULTS FOR MAXIMUM ALLOWABLE FLOORING SIZES

Floorings in public areas susceptible to overcrowding with 3 x 10 mm/0.39 inch glass + 2 x 1.52 mm/60 mil SentryGlas®

Widths	Deflection/	Lengths [mm]											
[mm] [in]	Stress	1600 Intact Broken [MPa]	1800 Intact Broken [MPa]	2000 Intact Broken [MPa]	2200 Intact Broken [MPa]	2400 Intact Broken [MPa]	2600 Intact Broken [MPa]	2800 Intact Broken [MPa]	3000 Intact Broken [MPa]	3200 Intact Broken [MPa]	3400 Intact Broken [MPa]	3600 Intact Broken [MPa]	Glass o 3 x 10
1600 62.99	Deflection	2.21 3.78	2.64 4.60	3.04 5.35	3.38 6.02	3.68 6.61	3.94 7.12	4.15 7.56	4.33 7.92	4.48 8.23	4.60 8.49	4.70 8.71	+ 2 X I
	Stress	18.25 20.98	18.81 21.82	19.19 22.44	19.62 23.05	19.88 23.46	19.98 23.7	20.20 24.01	20.30 24.19	20.29 24.26	20.43 24.44	20.47 24.52	Loads
1800 70.87	Deflection	2.64 4.60	3.26 5.77	3.84 6.90	4.37 7.96	4.86 8.92	5.28 9.78	5.65 10.54					Max
	Stress	18.81 21.82	18.80 21.81	19.25 22.55	19.79 23.31	20.14 23.87	20.34 24.25	20.64 24.68					Deint L
2000 78.74	Deflection	3.04 5.35	3.84 6.90	4.63 8.46	5.39 9.98								Point u
	Stress	19.19 22.44	19.25 22.55	18.92 22.22	19.48 23.05								Scenar
2200 86.61	Deflection	3.38 6.02	4.37 7.96	5.39 9.98									+ 1.5 x
	Stress	19.62 23.05	19.79 23.31	19.48 23.05									Scenar
2400 94.49	Deflection	3.68 6.61	4.86 8.92										1.0 x S
	Stress	19.88 23.46	20.14 23.87										+ 1.0 x
2600 102.36	Deflection	3.94 7.12	5.28 9.78										Import
	Stress	19.98 23.7	20.34 24.25										1. The
2800 110.24	Deflection	4.15 7.56	5.65 10.54										2. Your
	Stress	20.20 24.01	20.64 24.68										3. Defl
3000 118.11	Deflection	4.33 7.92											have
	Stress	20.30 24.19											It m
3200 125.98	Deflection	4.48 8.23											Max. a
	Stress	20.29 24.26											The ma
3400 133.86	Deflection	4.60 8.49											have b
	Stress	20.43 24.44											Dermin
3600 141.73	Deflection	4.70 8.71											Permis ■ FT ø
	Stress	20.47 24.52											■ Heat

Floorings in public areas susceptible to overcrowding with 3 x 12 mm/0.47 inch glass + 2 x 1.52 mm/60 mil SentryGlas®

Widtl	าร	Deflection/	Lengths [mm]										
[mm]	[in]	Stress	2000 Intact Broken [MPa]	2200 Intact Broken [MPa]	2400 Intact Broken [MPa]	2600 Intact Broken [MPa]	2800 Intact Broken [MPa]	3000 Intact Broken [MPa]	3200 Intact Broken [MPa]	3400 Intact Broken [MPa]	3600 Intact Broken [MPa]	3800 Intact Broken [MPa]	Glass construction 3 x 12 mm (0.47 in) FT gl + 2 x 1.52 mm (60 mil) Se
2000	78.74	Deflection	2.99 5.30	3.47 6.24	3.93 7.13	4.34 7.94	4.71 8.69	5.04 8.69	5.33 9.95	5.58 10.48	5.80 10.94	6.00 11.35	
		Stress	13.82 16.2	14.25 16.85	14.59 15.33	14.82 17.79	15.12 18.22	15.31 18.22	15.40 20.89	15.59 21.92	16.14 22.82	16.64 23.61	to de contra do contra d
2200	86.61	Deflection	3.47 6.24	4.12 7.50	4.74 8.72	5.32 9.89	5.85 10.98	6.34 11.98	6.79 12.89				Loads and load complinat
		Stress	14.25 16.85	14.53 17.14	14.91 17.74	15.20 17.94	15.56 18.77	15.81 20.90	16.33 22.37				Max. uniform live load = 5
2400	94.49	Deflection	3.93 7.13	4.74 8.72	5.54 10.32	6.31 11.88							Point load = 360 kg
		Stress	14.59 15.33	14.91 17.74	14.93 17.77	15.25 18.33							Scenario 1: All layers inta
2600	102.36	Deflection	4.34 7.94	5.32 9.89	6.31 11.88								1.2 x Self weight
		Stress	14.82 17.79	15.20 17.94	15.25 18.33								+ 1.5 x Imposed live load
2800	110.24	Deflection	4.71 8.69	5.85 10.98									Scenario 2: Any one laye
		Stress	15.12 18.22	15.56 18.77									+ 1.0 x Imposed live load
3000	118.11	Deflection	5.04 8.69	6.34 11.98									Important notos
		Stress	15.31 18.22	15.81 20.90									1. The imposed live load ha
3200	125.98	Deflection	5.33 9.95	6.79 12.89									2. Young's Modulus for Ser
		Stress	15.40 20.89	16.33 22.37									3. Deflection values for or
3400	133.86	Deflection	5.58 10.48										for information only. It
		Stress	15.59 21.92										Max. allowable deflection
3600	141.73	Deflection	5.80 10.94										The maximum values of d
		Stress	16.14 22.82										For the majority of cases,
3800	149.61	Deflection	6.00 11.35										Permissible stresses for gl
		Stress	16.64 23.61										 FI glass = 62.9 MPa Heat strengthened glass

(Commercial & retail spaces where people may assemble in case of emergency)

onstruction

mm (0.39 in) FT glass .52 mm (60 mil) SentryGlas®

and load combinations

niform live load = 500 kg/m²

oad = 360 kg

rio 1: All layers intact Self weight Imposed live load

rio 2: Any one layer is accidentally broken elf weight Imposed live load

ant notes

imposed live load has been considered to be ng for 1 hour @ 40°C.

ng's Modulus for SentryGlas® E = 27.8 MPa lection values for one layer broken scenario e been calculated for information only. nay not be design requirements.

llowable deflection considered = Span / 300

aximum values of deflection and stresses been mentioned. For the majority of cases, it ed for the point load case.

sible stresses for glass types for 1 hour load lass = 62.9 MPa strengthened glass = 29.2 MPa

(Commercial & retail spaces where people may assemble in case of emergency)

ass entryGlas®

ions 500 kg/m²

act

r is accidentally broken

as been considered to be acting for 1 hour @ 40°C. ntryGlas® E = 27.8 MPa ne layer broken scenario have been calculated may not be design requirements.

considered = Span / 300

eflection and stresses have been mentioned. , it occurred for the point load case.

ass types for 1 hour load

Copyright © 2020 Kuraray. All rights reserved. Trosifol, SentryGlas, Butacite, SentryGlas Xtra, SGX and Spallshield are trademarks or registered trademarks of Kuraray Co., Ltd. or its affiliates. Trademarks may not be applied for or registered in all countries. The information provided herein corresponds to Kuraray's knowledge on the subject at the date of its publication. This information may be subject to revision as new knowledge and experience becomes available. The information provided falls within the normal range of product properties and relates only to the specific material designated; this data may not be valid for such material used in combination with any other materials or additives or in any process, unless expressly indicated otherwise. The data provided should not be used to establish specification limits or used alone as the basis of design; they are not intended to substitute for any testing you may need to conduct to determine for yourself the suitability of a specific material for your particular purposes. Final determination of suitability of any material or process and whether there is any infringement of patents is the sole responsibility of the user. Since Kuraray cannot anticipate all variations in actual end-use conditions, Kuraray makes no warranties and assumes no liability in connection with any use of this information. 1/2020